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A Computer Algorithm for Determining 
the Hausdorff Dimension of Certain Fractals 

By Lucy Garnett 

Abstract. A fractal is a set which has nonintegral Hausdorff dimension. Computation 
of the dimension directly from the definition would be very time-consuming on a com- 
puter. However, the dimension can be computed using Newton's method if there exists 
a self-expanding map on the set. This technique is applied to compute the dimension of 
the Julia set of the quadratic mapping z -z2 + c for small real values of c. 

1. Fractals and Hausdorff Dimension. B. Mandelbrot [4] introduced the 
word fractal as "a set for which the Hausdorff-Besicovitch dimension strictly exceeds 
the topological dimension.' Whereas the topological dimension of any subset of the 
plane is either one or two, the Hausdorff dimension may be nonintegral. Physicists 
[7] use the word "strange" in this context. 

Informally, the Hausdorff dimension of a subset X of a metric space can be 
pictured by overlaying an n by n gridwork of boxes on X for arbitrarily large 
values of n. In this manner, X is covered by n2 boxes. If X is linear, then only 
n of the boxes intersect X, and X has Hausdorff dimension one. If X covers most 
of the plane then approximately n2 of the boxes intersect X, and X has Hausdorff 
dimension two. If X falls between the first and second case, then X intersects nd 

boxes for some value of d between one and two, and X is a fractal with Hausdorff 
dimension d. In other words, if X has dimension d, then approximately nd boxes 
of size 1/n are needed to cover X. This might be of interest when drawing X on 
some coarse device such as a graphics terminal, where a point on the device is in 
reality a ball of size 1/n. Strictly speaking, the "gridwork picture" describes the 
Minkowski dimension. It is equal to the Hausdorff dimension in all "nice" cases 
which includes all the sets discussed in this paper. More formally: 

Definition. Let C(e) be a covering on X by countably many balls {Bj(ri)}iEI 
of radius ri < e. For each real number af > 0 form the sum >iI ri. Take the 
infimum of the sum over all coverings C(e). Define a function Ha by taking the 
limit of the infimums as e approaches zero. Notationally, this says 

H, (X) = lim inf (Erg. 
e-O~)kzEI/ 

This is a way of measuring the area needed to cover X by small balls, with the 
convention that a ball of radius r has area ra. If af is too small, then H, (X) is 
infinite. If af is too large, then H, (X) is zero. There is a unique value where 
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this function passes from infinite to finite. This critical number 6 is the Hausdorff 
dimension of X, and H<,(X) is the Hausdorff measure of X in v. 

In some sense the Hausdorff dimension gives the number of linear dimensions. 
See Rogers' book [8] for a fuller discussion. It is expensive and difficult to implement 
this definition on a computer. However, if X has a self-expanding map, there is 
another approach derived from theorems proven by R. Bowen [1] and D. Sullivan 
[10]. 

THEOREM. Let f: X -+ X be an expanding complex analytic map. Then there 
exists a unique probability measure m on X and a unique real number 6 such that 
f expands m by a factor of If'16. Furthermore, the Hausdorff dimension of X is 6 
and m represents Hausdorff measure. That is, for any measurable subset A of X 
the following equation holds: 

(*) m(f(A)) = A If'(z)18m(dz). 
z EA 

Let us use this theorem to calculate the Hausdorff dimension of two well-known 
sets. 

Example 1. Let X be the entire 2-dimensional plane. Set f equal to the doubling 
map. Namely, f(x, y) = (2x, 2y) and f satisfies the hypotheses of the theorem 
above. Let m be the usual Lebesgue measure. If A is a subset of X, say a ball of 
radius r, then m(A) = 7rr2 and m(f(A)) = 7r(2r)2 = 47rr2. Since f'(z) = 2 for all 
values of z, we see that Eq. (*) is satisfied for a value of 6 equal to two. Uniqueness 
of the solution implies that the plane has Hausdorff dimension two. Although this 
result is by no means startling nor new, it is reassuring. 

Example 2. Let X be the middle-third Cantor set. If we represent the points 
in the unit internal [0,1] as sequences of zeros, ones and twos, then the Cantor set 
consists of all those sequences which contain only zeros and twos. The expanding 
self-map f is obtained by stretching the Cantor set by a factor of 3 and then laying 
it over itself. More precisely, if z is between 0 and 1/3, then f (z) = 3z. Otherwise, 
f (z) = 3z - 2. This is a double covering with derivative constantly equal to 3. 
Let m be the Lebesgue measure. If A is a subset of X, then m(f(A)) = 2m(A). 
Equation (*) is satisfied if 36 = 2. Solving for 6, we find that the Hausdorff measure 
of the middle-third Cantor set is log 2/ log 3. 

The Hausdorff dimensions of both these examples have been known for a long 
time. The remainder of this paper is devoted to finding the Hausdorff dimension 
of the Julia set of a quadratic map. There have been no previous numerical ap- 
proximations to these dimensions. Indeed, they have only recently been found to 
be nonintegral [10]. 

2. Julia Sets. Julia sets arise naturally in the study of the dynamical systems 
formed by iterating complex analytic maps from the plane to itself. The study of 
these systems was initiated in the early 1900's by P. Fatou and G. Julia. We shall 
restrict our attention to quadratic maps of the form f (z) = z2 + c. A major concern 
in the study of dynamical systems is the classification of orbits. The orbit of the 
point z is the sequence of points z, f (z), f (f (z)), f (f (f (z))), ad infinitum. A main 
question is: When does the orbit of a point converge to a fixed or periodic point, and 
when does it have no such stability but instead moves around erratically? Consider 
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the example f(z) = Z2. Points inside the unit circle have orbits converging to the 
origin. Points outside the unit circle converge to infinity. Points on the unit circle 
itself (for the most part) move around the unit circle in a complicated manner. 
Thus the complex plane is split into two different sets. The stable points are those 
for which points nearby stay nearby under the action of f. In the above example 
this corresponds to those points whose magnitude is not equal to one. The unstable 
points are those for which nearby points spread apart. The latter set is called the 
Julia set of the mapping f. It follows that f is a self-expanding map on the Julia 
set. 

The Julia set in the above example is the unit circle. However, if the map f 
is perturbed just slightly by adding a small constant c to the z2 term, then the 
Julia set becomes infinitely complicated. The first investigations of the morphol- 
ogy of Julia sets go back to B. Mandelbrot [5]. The set of complex values c for 
which the Julia set is connected is called the Mandelbrot set and is represented in 
Figure 1 by the black set. This set is generated by using the following theorem [1]: 
The Julia set of the function f(z) = z2 + c is connected if and only if the sequence 
of sums c, c2 +c, (c2+C)2+C,. .. does not become infinite. Figures 2 and 3 represent 

FIGURE 1 

The Mandelbrot set is the dark area. The figure has symmetry about the real axis. The real part 

of the main cartoid varies from -.75 to .25. The entire figure is contained within a box of length 

4 centered at the origin. The leftmost point hits the edge of this box at (-2, 0). The algorithm 

for computing the Hausdorff dimension works only for real values of c lying in the main cartoid. 
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FIGURE 2 

The boundary of the dark region is the Julia set for a real value of c, approximately -.6, located 

near the leftmost boundary of the main cartoid of the Mandelbrot set. 

FIGURE 3 

The boundary of the dark region is the Julia set for a real value of c, approximately .2, located 

near the rightmost boundary of the main cartoid of the Mandelbrot set. 
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FIGURE 4 

The boundary of the dark region is the Julia set for a complex value of c az~(-.6, .1). The algorithm 

presented in this paper does not apply to this case. 

the Julia sets for two real values of c occurring near the left and right boundaries of 
the main cartoid-like body of the Mandelbrot set. They were generated by starting 
with an unstable fixed point of f and performing a backwards iteration. This 
algorithm works because the inverse orbit of any point in the Julia set is dense 
in the Julia set [10]. Since f is expanding on the Julia set, f -1 is contracting on 
the Julia set, and therefore backwards iteration is a stable procedure. Two sources 
of detailed color pictures are Mandelbrot's book [4] and the August 1985 issue of 
Scientific American. Figures 1, 2, 3 and 4 in this paper are courtesy of Dr. Alan 
Norton, IBM Thomas J. Watson Research Center. 

The question that we investigate is: How does the Hausdorff dimension of the 
Julia set of z2 + c depend upon the value of c? Attention is now restricted to those 
values of c lying inside the main body of the Mandelbrot set. D. Ruelle [9] proved 
that the Hausdorff dimension is an analytic function of c. For c equal to zero we 
have seen that the Julia set is the unit circle and therefore has Hausdorff dimension 
equal to one. D. Sullivan [10] proved that for c greater than zero the Hausdorff 
dimension is greater than one. For the remainder of the paper we consider only real 



296 LUCY GARNETT 

values of c in the main body. Hence from now on c is a real value lying between 
-.75 and +.25. Since f is a self-expanding map on the Julia set, our algorithm 
searches for a solution to Eq. (*). It uses Newton's method to do this. The idea 
for the procedure is due to W. P. Thurston. 

3. The Algorithm. 

Step 1. Finite Approximation 
We want to partition the Julia set of f(z) = z2 + C into many very small sets in 

order to approximate the integral in Eq. (*) by finite sums. Choose an integer n. 
We will generate a binary tree of depth n whose nodes are points on the Julia set 
and partition the set into 2n pieces. First find the unique expanding fixed point of 
f. This is achieved by solving the equation z2 _ z + c = 0. In general there are two 
solutions, but the larger one is the expanding one. If we denote this solution by w, 
then -w is the root of the binary tree. The rest of the tree is filled in by iterating f 
backwards n times as described in the previous section. The children of a node are 
the inverse image of their parent. The inverse image with smallest imaginary part 
is the left child. This convention arranges the points at any given level in circular 
order. The nth level will have 2n points z1, . . ., Z2r and determines a partition of 
the Julia set into 2n subsets {Ai}1<i<2- centered about the points zi. 

Step 2. Setting up Eq. (*) 
Since the Ai are in circular order and f is a double covering on the Julia set, we 

have 

f(Ai) = A2i-1 U A2i 

and 
m(f(Ai)) = m(A2i-1) + m(A2i). 

Ai is a small set with center zi, and we approximate the derivative function f'(z) 
on Ai by f'(zi). Hence, a finite approximation of Eq. (*) is 

m(A2i_1) + m(A2i) If'(zi) 1m(Ai) for all i. 

Rewriting this equation, we get 

(**) (m(A2i-1) + m(A2i))/If'(zi)18 m(Ai). 

Equation (**) only holds when 6 is the Hausdorff dimension. If we view the left- 
hand side of this equation as a transformation on measures, then we can restate 
the problem as one of searching for a fixed point. More precisely, for any u > 0 
define T, to be a linear operator on measures as follows: 

Ta (m(Ai)) = (m(A2i-1) + m(A2i))/jf'(Zi)j'1 

The problem then becomes to find a combination of 6 and m such that m is a fixed 
point of T6. That is, T6 (m(Ai)) = m(Ai) for all i. This 6 will approximate the 
Hausdorff dimension of X. 

Step 3. Initial Conditions 
Start the procedure with a guess of a = 1 and the uniform measure m(Ai) = 1/2n 

for every i. 
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FIGURES 5a-e 

H(c) is the Hausdorff dimension of the Julia set generated by the mapping z z z2 + C. Since the 

Julia set generated by z -* z2 is the circle with dimension one, the graphs plot H (c) - 1 vs c. Figure 

5a contains all the values calculated with c ranging from - .73 to .23. Figures 5b-5e represent 

successive magnifications about the origin. 

Step 4. Transformation of the Measure 
Given a and m, iterate the transformation T, on the set of measures until an 

eigenvector m, is found having eigenvalue K(u). This means that T,(m~,(Ai)) = 

K u)m,(Ai). T, is a linear transformation, and the iteration will converge to 
the largest eigenvector. Renormalization of the transformed measure after each 
application of T, prevents the norm from approaching infinity. If the eigenvalue 
equals one, then m, is a fixed point for T, and 6 = a is the Hausdorff dimension. 
In that case, the algorithm terminates. Otherwise, we must change the value of a. 

Step 5. Newton's Method Determines a New Choice of a 
If we view the eigenvalue K(u) found in Step 4 as a function of a, then we are 

looking for a satisfying K(a) = 1. This is equivalent to finding the point where the 
function K(a) - 1 equals zero. Use Newton's method for finding roots of functions 
to get 

Unew = U +(1-K )/K() 

Choose a small number E and use Step 4 to compute K(a + E). The derivative 
K'(a) can then be approximated as 

K'(a) ; (K(a + E) - K(a))/E. 
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Step 6. Reset the Measure and Dimension 
Let m now be the eigenvector mr and a be the unew found in Step 5. Go back 

to Step 4. The loop terminates when Step 4 results in an eigenvalue of 1. 

4. Discussion of the Results. This algorithm was implemented in the C 
programming language on a VAX computer. The output is from a laser printer. 
Figures 5a-e illustrate the results. Since the Hausdorff dimension is always at least 
one, the graph is of H(c) - 1 where H(c) is the Hausdorff dimension of the Julia 
set ofthe z -z2 +c. 

This method works for any hyperbolic polynomial with connected Julia set; how- 
ever, the algorithm requires the points on the Julia set to be kept in circular order. 
This is easy to do when c has no imaginary part. We are currently working on a 
program to extend this technique to complex values of c using analytic continua- 
tion. The Julia sets for complex value of c look even more convoluted than for real 
values, as is illustrated in Figure 4. 

Although the program produces a beautiful curve, there remain some parts of the 
theory not yet demonstrated. H(c) depends upon the number of iterations n used 
to form the partition. There are severe space limitations on how large n can be, 
since the number of points is an exponential function of n. A computer experiment 
can be made to check how the Hausdorff dimension varies with the number of points 
in the Julia set. It is done as follows. Compute the Hausdorff dimension for a fixed 
number of iterations and then increase the number of iterations by one. Modify the 
algorithm in Step 3 by initializing the process using the Hausdorff dimension just 
computed for the smaller n and its corresponding eigenmeasure. If this is done, 
then the process converges more rapidly, indicating that the previously computed 
measure and dimension for the smaller value of n were already good approximations 
to the correct solutions. The dimension appears to converge rather rapidly for small 
values of c and more slowly for large values. But we do not have a proof that this 
does converge, much less a handle on what the rate of convergence would be. 
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